Uncoupling of myelin assembly and schwann cell differentiation by transgenic overexpression of peripheral myelin protein 22.
نویسندگان
چکیده
We have generated previously transgenic rats that overexpress peripheral myelin protein 22 (PMP22) in Schwann cells. In the nerves of these animals, Schwann cells have segregated with axons to the normal 1:1 ratio but remain arrested at the promyelinating stage, apparently unable to elaborate myelin sheaths. We have examined gene expression of these dysmyelinating Schwann cells using semiquantitative reverse transcription-PCR and immunofluorescence analysis. Unexpectedly, Schwann cell differentiation appears to proceed normally at the molecular level when monitored by the expression of mRNAs encoding major structural proteins of myelin. Furthermore, an aberrant coexpression of early and late Schwann cell markers was observed. PMP22 itself acquires complex glycosylation, suggesting that trafficking of the myelin protein through the endoplasmic reticulum is not significantly impaired. We suggest that PMP22, when overexpressed, accumulates in a late Golgi-cell membrane compartment and uncouples myelin assembly from the underlying program of Schwann cell differentiation.
منابع مشابه
P0 Glycoprotein Overexpression Causes Congenital Hypomyelination of Peripheral Nerves
We show that normal peripheral nerve myelination depends on strict dosage of the most abundantly expressed myelin gene, myelin protein zero (Mpz). Transgenic mice containing extra copies of Mpz manifested a dose-dependent, dysmyelinating neuropathy, ranging from transient perinatal hypomyelination to arrested myelination and impaired sorting of axons by Schwann cells. Myelination was restored b...
متن کاملGlycoprotein Overexpression Causes Congenital Hypomyelination of Peripheral Nerves
We show that normal peripheral nerve myelination depends on strict dosage of the most abundantly expressed myelin gene, myelin protein zero ( Mpz ). Transgenic mice containing extra copies of Mpz manifested a dose-dependent, dysmyelinating neuropathy, ranging from transient perinatal hypomyelination to arrested myelination and impaired sorting of axons by Schwann cells. Myelination was restored...
متن کاملNeurons promote the translocation of peripheral myelin protein 22 into myelin.
Schwann cells express low levels of myelin proteins in the absence of neurons. When Schwann cells and neurons are cultured together the production of myelin proteins is elevated, and myelin is formed. For peripheral myelin protein 22 (PMP22), the exact amount of protein produced is critical, because peripheral neuropathies result from its underexpression or overexpression. In this study we exam...
متن کاملImpaired differentiation of Schwann cells in transgenic mice with increased PMP22 gene dosage.
An intrachromosomal duplication containing the PMP22 gene is associated with the human hereditary peripheral neuropathy Charcot-Marie-Tooth disease type 1A, and PMP22 overexpression as a consequence of increased PMP22 gene dosage has been suggested as causative event in this frequent disorder of peripheral nerves. We have generated transgenic mice that carry additional copies of the pmp22 gene ...
متن کاملCell transplantation strategies for acquired and inherited disorders of peripheral myelin
Objective To investigate transplantation of rat Schwann cells or human iPSC-derived neural crest cells and derivatives into models of acquired and inherited peripheral myelin damage. Methods Primary cultured rat Schwann cells labeled with a fluorescent protein for monitoring at various times after transplantation. Human-induced pluripotent stem cells (iPSCs) were differentiated into neural cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 11 شماره
صفحات -
تاریخ انتشار 2000